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The problem considered is that of two-dimensional viscous flow in a straight 
channel. The steady Navier-Stokes equations are linearized on the assumption 
of small disturbance from the fully developed flow, leading to an eigenvalue 
equation resembling the Orr-Sommerfeld equation. This is solved in the limiting 
cases of small and large Reynolds number R, and an approximate method is 
proposed for moderate R. The main results are (i) the dominant mode of the 
disturbance velocity (i.e. that which persists longest) is antisymmetrical; (ii) for 
large R there are two sequences of eigenvalues. Both sequences are asymptotically 
real as R -+ 00. The members of the first sequence are O(1) as R -+ co and are 
complex for all finite R. The members of the second sequence are O(R-1) and 
the imaginary part is O(R--N) for all N .  It is the eigenvalues of the second sequence 
which will dominate the flow at large R. 

1. Introduction 
The problem of flow in the inlet region in pipes and channels is one of obvious 

practical interest and has received much attention in the past. The early work 
on entry flow in a circular pipe is summarized in Rosenhead (1963); more detail 
is given in Goldstein (1965) and the somewhat simpler problem of two-dimensional 
flow in a straight channel is also considered. In  all this work the Reynolds number 
is assumed to be large. The basis of the method is to divide the entry region 
into zones; near the entrance the flow is assumed to consist of an inviscid core 
together with a thin boundary layer on the walls; far from the entrance, the 
solution is obtained as a perturbation of the fully developed flow. The two solu- 
tions are then patched together at some intermediate location. 

A different approach has been used by Sparrow, Lin & Lundgren (1964). Here 
the equations are first simplified on the assumption of large Reynolds number and 
then made linear by introducing a suitably stretched downstream co-ordinate. 
The stretching factor is determined from the requirement that the local pressure 
gradient calculated from momentum considerations be the same as that calcu- 
lated from energy considerations. This paper also contains a comprehensive 
survey of the experimental work. 

In  the present work attention is confined to the two-dimensional problem of 
flow in a straight channel; an attempt is made to solve the Navier-Stokes 
equations in the region some distance from the inlet, where the flow has almost 
attained the fully developed velocity distribution. The equations are linearized 
on the assumption of small disturbance from the parallel flow, leading to an 
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eigenvalue equation for the decay of a stationary perturbation very similar to 
the Orr-Sommerfeld equation. 

In $ 3 this equation is solved in the limiting case of small Reynolds number. 
The next two sections deal with the case of large Reynolds number. The analysis 
of 5 4 is based on the similarity of the present equation to the Orr-Sommerfeld 
equation and the aim has been to adapt the considerable body of analysis relating 
to the stability problem to the present purpose. 

A numerical attempt on this problem has been made by Gillis & Brandt (1964). 
This work will be discussed in the conclusion ( 9  7 ) ;  the results given there indicate 
that there is a sequence of eigenvalues which for large R are distinct from those 
found in $ 4 and the appropriate analysis is given in $5.  

2. The perturbation equation 
The channel width is taken to be 2h, the flux per unit span &, and the kinematic 

viscosity v. Then with length scale h, velocity scale Q/h and Reynolds number 
R = Q/v  the dimensionless streamfunction $ satisfies the equation 

where x is the (dimensionless) downstream co-ordinate and y is the (dimension- 
less) transverse co-ordinate. With the origin in the centre of the channel the 
boundary conditions on the walls y = k 1 are 

$(x, k 1)  = * 1, $gX, & 1)  = 0. 

$ -+ $ko(Y) = +(3Y - Y3) 

$ S - + O  

The velocity far downstream approaches the parabolic profile and so 

as x - f c o .  I 
The problem is completely posed if 9 and 
some value of x which may be taken as x = 0. It is obvious that if 

are prescribed as functions of y at 

$.cot Y) = +(3Y--Y3), k ( O >  Y) = 0 

then the solution is simply $ = 4(3y-y3); the assumption now is that, if the 
boundary conditions are slightly perturbed, the solution is also slightly perturbed. 
More precisely, if 

$(O, Y) = 6(3Y - Y3) + Ef(Y), 

R(0,Y) = E d Y L  

then $ = 443Y - y3) + &x, y), (2 .2 )  

for small E .  Substituting (2.2) in (2.1) and neglecting squares of E leads to a linear 
equation for f i  whose coefficients are independent of x; writing 

1F = 544)  exp ( -ax) 
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leads finally to 

with boundary conditions $( & 1) = $’( f 1) = 0. 

The similarity to the Om-Sommerfeld equation (Rosenhead 1963, p. 515) will 
be noted. The main difference is that in the present equation a is the eigenvalue, 
not a prescribed wave-number; the equation is non-linear in a, which in general 
will be complex. It is readily shown that, if a is an eigenvalue, so is a* (the complex 
conjugate); the eigenfunction is $*. A second difference is that we are here 
interested only in decaying modes, since growing modes cannot satisfy the 
boundary condition at  x = CO; this simplification is possible because of the elliptic 
character of the equations (cf. the unsteady Orr-Sommerfeld equation which is 
parabolic in t ) .  Since there is symmetry about the real axis, as just noted, atten- 
tion may be confined to the first quadrant of the a plane. There is in fact an 
infinite sequence of eigenvalues here for each fixed R, which may be ordered by 
the magnitude of the real part. The corresponding eigenfunctions will be alter- 
nately odd or even functions of y (since each one has more zero in - 1 < y < 1 
than the last) and the terms odd and even will be applied to the eigenvalues 
themselves. 

The objective, then, is to calculate a for all R;  this can be done in the extreme 
cases R-+ co and R < 1, and for intermediate R some approximate method must 
be used. The corresponding eigenfunctions are of less interest; the equation is 
not self-adjoint, that they do not form an orthonormal set, which means that 
there is no expansion theorem for the prescribed functions on the boundary 
5 = 0. Physically, the most interesting problem is to find the eigenvalue with 
smallest real part, since this component of the disturbance persists longest. 

3. Theory for small R 

have the same properties and the following expansions may be used: 
Since the coefficients in (2.3) are entire functions of y, a and R the solution will 

4 = $o+R$,+ ...>I 
a = a,+Ra,+ .... 

Substituting in (2.3) and retaining only zero-order terms gives 

This problem has an analogue in the theory of plane elastostatics and this has 
received considerable attention (e.g. Johnson & Little 1964), mainly with a view 
to finding expansions in terms of the eigenfunctions of (3.2). This is of secondary 
interest in the present problem and the analysis needed is sufficiently straight- 
forward to be presented here. The eigenvalue a, must be a root of 

sin 2a, = 2a,, (3.3) 
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with the positive sign giving the odd eigenvalues. All the roots are complex 
except a, = 0, which may be ignored because the corresponding $o is identically 
zero. The roots of (3.3) have been tabulated (Hillman & Salzer 1943, Bobbins & 
Smith 1948); if a, is a root then so are at and - a,, giving a root in each quadrant 
of the a plane. 

It is an interesting fact that the first-quadrant eigenvalue with smallest real 
part is an even eigenvalue ; this means that the corresponding streamwise velocity 
perturbation is odd. In  the literature attention has been concentrated on sym- 
metrical velocity perturbations but it now appears that the first odd perturbation 
has the smallest decay rate. This may be understood if it is recalled that the 
perturbations are made at  constant flux; it follows that any symmetric stream- 
wise velocity perturbation must have a t  least two zeros in - 1 < y < 1; the 
first asymmetrical mode has only one. 

Proceeding to the next order of approximation, we find 

& f 2ai $1 f $1 = -$a,( 1 -y2) ($: $ 0 )  - 3ao$o- 4aoa,($: + a;+o), (3.4) 
$,( * 1)  = $;( f. 1) = 0. 

The right-hand side is a known function of y except for a,. The fact that a, is an 
eigenvalue of the homogeneous equation leads to a condition to be imposed on 
the right-hand side in order for a solution to exist. This may be obtained by 
multiplying by $, and integrating from - 1 t o  + 1, or merely by solving the 
equation by elementary methods and applying the boundary conditions. For 
the even eigenvalues it turns out to be 

Fe( 1) (1 - Zia, - a2) = 2Fi( l),  

Po( 1) (1 - Zia, + u2) = 2F;( l), 
and for the odd ones 

where a = exp (ia,) and 

I 15 i + --( 1 - a2) y2 i sinao!y +$( 1 - a2) ~ 3 ~ 0 s  aoy. 
4 “0 

In  this way al may be obtained in terms of ao; the results for the first few eigen- 
values are given in table 1. 

Eigenvalue “ 0  

1 2.10620+ 1.128371, 
2 3.74884 + 1.384341, 
3 5.35627 + 1.551581, 
4 6.94998+ 1-67611i 
5 8*53668+ 1.775541, 
6 10,11926 + 1.858381, 

TABLE 1. Eigenvalues for 

a1 

- 0.34138+0.136671, 
- 0.29461 + 0.038151, 
-0.27548+0.01611i 
- 0.26633 + 0’008361, 
- 0.26131 + 0’004921, 
- 0.25828 + 0.00315i 

small R; a = a, + Ra, 
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4. Theory for large R; eigenvalues of O(1) 

In  this section an asymptotic theory for large R is developed on the assumption 
that a = O(1) as R + 00. The analysis is modelled on Lin (1955, chapter 8) and 
is carried out using the techniques of matched asymptotic expansions as des- 
cribed by Van Dyke (1964). It is convenient therefore to take a2 and aR as the 
parameters of the problem in order to keep the analysis as similar as possible to 
that used in the stability problem. The equation connecting a2 and aR can then 
be solved for a in terms of R. 

Two complementary asymptotic theories are needed. In the central region 
of the channel there are four solutions, asymptotically valid for fixed y as 
aR -+ co. These are suitable except near the walls, where there are ' critical layers'; 
in these regions four regular solutions are obtained, valid for fixed s(aR)f as 
aR --f GO, where s is the distance from the wall. 

In  view of the symmetry of the problem, it is necessary to consider only half 
the channel, say - 1 < y < 0. The four boundary conditions (two each at 
y = 0 and y = - 1) together with the matching conditions enable the eigenvalue 
to be calculated. 

We write e = (aR)-*; a is of course complex; it may be assumed that 

as noted in 5 1, and so the relevant branch of E is 0 Q arge < in-. 
The first pair of solutions is obtained from the expansions 

4 = 

a2 = a;+elnea:+caa2,+ .... 
+ E In $1) + eqW + . . . , 

The logarithmic term might not be anticipated at this stage but turns out to be 
necessary for the matching process. Writing 9 for the differential operator 

a2 2 
-+a;+- dY2 1 - 3 2 ,  

we find B p  = 0, (4.2) 

(4.3) 

(4.4) 

It will appear that the main problem is to determine the boundary conditions 
on these equations. For the moment we note that y = 0 is an ordinary point of 
(4.2) and two independent solutions in powers of y can be obtained: 

g p  = - a2 p )  
g p )  = - a; +cn). 

1 j  
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The second pair of solutions derived by Lin (1955), the viscous solutions, will 
not be needed. The leading terms behave like exp ( f iQ(y) d), where Q is a real 
function of y ;  i.e. both solutions would be exponentially large (because E is 
complex) and we merely require that they occur in that combination which is 
exponentially small, and can therefore be neglected in comparison with all the 
terms of (4.1). . .  

The first approximation to the general solution in the outer region may now 
be written 

4 ( O )  = AFl(9) + BF2(Y), 

and the boundary conditions are (p = (p" = 0 at y = 0 for the odd eigenvalues and 
$' = qS" = 0 a t  y = 0 for the even ones, giving A = 0 and B = 0 respectively. 
Similar conditions must be satisfied by the higher-order terms. Thus one 
boundary condition on (4.2), (4.3) and (4.4) has been obtained, namely that 
$(O), and cf2), or their first derivatives, vanish at  y = 0, according as the 
eigenvalue is odd or even. 

The other boundary condition will come from matching with the inner solution. 
For this it will be necessary to obtain series solutions of (4.21, (4.3) and (4.4) about 
the singular point y = - 1. Two independent solutions of (4.2) in terms of 

(=  y f l )  are 
fl(S) = s-gs2-ga;s3+ ..., (4.7) 

f2(s) = 1 + . . . -fl(s) Ins. (4.8) 

These series will also give the complementary functions of (4.3) and (4.4); the 
general solution of the equation $ 3 ~  = g(s) (where $3 is rewritten in terms of s) 
is in fact 

This formula may be used to obtain expansions of $(l) and #2) near s = 0; 

We turn now to the analysis of the appropriate 'inner' expansion. A stretched 
the details will be given later. 

co-ordinate y = s / E  is introduced and solutions in powers of E are sought: 

(p = .(g'O)(y) + €g(l)(y) + . . .). (4.10) 

The functions g(O) and g(l) satisfy the equations 

Dg'O) = 0, (4.11) 

(4.12) 

where D is the differential operator (d4/dy4)+3y(d2/dy2). At y = 0 we have 
#I = q5' = 0 and two independent solutions of (4.10) are 

(4.13) 
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where Ai and Bi are the Airy functions. It is customary to write these solutions 
in terms of Hankel functions of order +, but there seems to be no particular 
advantage in this, and there is sufficient literature on the Airy functions for the 
present purpose (Miller 1946, Jeffreys & Jeffreys 1962). 

We now require the asymptotic forms of glo) and gLo’ as 7 + co; the relevant 
asymptotic expansions of the Airy functions are 

Ai( -c )  = ?,-~e-;-asin(gc%++t.rr)(1+0(5-t)), 

Bi ( - 5 )  = ?,-&-;-a cos (@ + $ 7 ~ )  (1 + O(<-%)), 

which are uniformly valid for - En- < arg c < 37~. 
However, both functions are exponentially large as y -+ co except when 

arg 6 = 0 (which implies that e is real). In this case both functions oscillate 
increasingly rapidly as 5 -+ co, and matching with the outer solution would be 
impossible. The outer solution was derived on the assumption that e has a non- 
zero imaginary part; otherwise it too would oscillate rapidly as E + 0. This 
circumstance may be provisionally ruled out on physical grounds, and this 
assumption will be verified a posteriori. It is necessary, then, that the functions 
g(i) and 9‘8) be combined in such a way that the exponentially large term is absent; 
writing # = e(ag‘,O’ + bgio)) + . . . , 
we see that the condition is a = ib. Since any normalization of the equations is 
acceptable we may take b = 1 and perform the integrations in (4.13). Including 
the terms from g(l) we find, as 7 -+ 00, 

# - 2 x 3-%(ey - $e2y2) + 3-k(Bi’(0) + iAi’(0)) (1 - eq In 7) 

+exponentially small terms in 7 + O(e3). 

Use has been made of the results 

/rAi(-O)dO = Q ,  Bi(-d)dO = 0 (Oreal). s, 
This series is to be matched with the outer solution given by (4.1) as s + 0. 

It will be convenient to anticipate the results of the matching process somewhat. 
Using (4.9) with 

for some Ic,, k,, it is easily shown that the particular integrals of (4.3) and (4.4) 
are O(s2) as s + 0. These terms will therefore not be needed for the first step of 
the matching process. This will show that #(O) contains no multiple of f2(s) 
(i.e. k, = 0) and so the particular integrals are in fact O(s3) as s -+ 0. The outer 
solution may therefore be obtained to the required order without the particular 
integrals. We have 

# = (A,+Elog€A1+EA2+ ...) (s-&2+ ...) 

+ (  B,+elogeB1+eB2+...)(1+... -slogs+...). (4.14) 

The first step of the matching process (Van Dyke 1964, p. 93) gives 

B, = 0, A ,  = 2 x 3%. 
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The boundary conditions on are therefore 

#(O) = 0 at s = 0, #O) or dqW/ds = 0 at 5 = 1. 

The eigenvalue a, may now be calculated numerically in a straightforward 
manner. The next stage of the matching process gives 

B, = 0, A ,  = 3-%(Bi’(o) +iAi’(o)). 

The function $(I) therefore satisfies the same boundary conditions as @ O ) ,  and 
since a, is an eigenvalue of the homogeneous equation we see from (4.9) that a 
solution of (4.3) can exist only if 

.IS1V1(s))Zds 0 = 0, 

which implies a2, = 0 and is a multiple of $(O) .  

Finally we obtain from the matching that 

B, = 3-%(Bi’(0) +iAi’(O)). 

The function #2) therefore satisfies 

qP) = B, at s = 0, #2) = O or dqP)’/ds = 0 at s = 1. 

Using (4.9) and the fact that qV0) = A,fl(s) we find 

aEj L{fl(s))zds = 4 x 3%(iBi’(O)-Ai‘(O)). 
0 

The integral here is readily found numerically and this gives a; in terms of a,. 
It now remains to solve the equation 

a2 = a; + Ea$ 
for u in terms of R. It will be noticed that a, = 0 is an eigenvalue of (4.2) and 
this case is slightly different from the higher eigenvalues. The result is 

The numerical details are given in table 2. 

(4.15) 

a0 a; exp ( - &in) K 
2.589 14.63 2.058 
4.319 30.42 2.162 
5.971 51.77 2.389 
7.590 78.05 2.617 

12.377 189.3 3.306 

TABLE 2. Eigenvalues of O( 1) as R + 03. a2 = a: + ecc; ; for a,, + 0, 
a = a,, + K exp ()in) R-* ; for a, = 0, cc = 3.309 exp (3ni) R* 
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5. Theory for large R: eigenvalues of order R-l 
The analysis presented here is motivated by the results of Gillis & Brandt 

(1964), whose work will be discussed in more detail in $ 7 .  On the assumption 
that a is O(Z3-l) as R -+ 00, the balance of terms in (2.3) is different from that 
found in § 4; using the expansions 

$ = $ o + R - 1 ~ , + R - 2 $ 2 + . . . ,  

= a, + R-la, + R-2a2 + . . . , 
one finds in fact - w o  = 0, (5.2) 

= - al{#l - y2) $: + WO), (5.3) 

and the boundary conditions are $,( & 1) = $A( & 1) = 0 for n = 0,1 ,2 ,  . . . . Here 
L is the differential operator 

It does not seem possible to obtain analytic solutions of (5.2) and numerical 
methods were used to find the eigenvalues a,. It is possible, however, to show 
that all the even eigenvalues are real. The equation may be integrated once to give 

&'(y) +a,{$(l -yz) &,(y) +3y$,(y)} = const. = $"'(1) = $"'( - 1). (5.4) 
If 4, is even, every term on the left of (5.4) is odd and it follows that #"( 1) = 0. 
Multiplying (5.2) by $:" (where * denotes the complex conjugate), integrating 
from - 1 to + 1 and using the result just obtained leads to the conclusion that 
a, is real. The author has been unable to establish whether or not the odd eigen- 
values are real, but all the eigenvalues found (by numerical methods) were in fact 
real. As in the previous sections, the f i s t  eigenvalue is even; the results are given 
in table 3. 

Eigenvalue a0 

1 14.45 
2 18.81 
3 48.87 
4 57.52 
5 104.43 

TABLE 3. Eigenvalues of O(R-l) as R -+ co; CI = aOR-l+ O(R-8) 

The next approximation, a,, may be found by multiplying (5.3) by $,, the 
solution of the adjoint equation to (5.2), and integrating from - 1 to + 1; this 
shows in fact that a, = 0, and is a multiple of 4,. An inspection of the higher 
approximations shows that all the odd a, are zero and also that, if a, is real, so 
are all the subsequent even a,. For example, $2 satisfies 

= - 2 4 4 4  - #a$( 1 - y2) #, - a2{%( 1 - y2) #; + 3$,], 

and, if a, is real, so are $,, 6, and a2. 
51 Fluid Mech. 38 
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6. Approximate solution 
In  the previous sections the eigenvalues have been calculated for extreme 

values of R, namely R < 1 and R -+ co. It is plausible in view of the remarks of $ 2  
that, as R varies, a traces out a smooth curve in the complex plane (in fact, 
separate curves for each branch of the function a(R)). The calculations of $4 3-5 
will give the end-points of these curves together with the initial gradients. In this 
section an approximate method is suggested, to give some idea of the behaviour 
of a for intermediate values of R. 

The basis is simply to substitute a trial function $(y) in (2.3) andintegrate from 
y = - 1 to y = 1, giving an equation connecting a and R. Two modifications are 
needed. First, if $ is an odd function all the terms disappear. Second, the results 
are rather poor (when compared with the exact results of $3,  for instance), 
probably because too much depends on guessing accurately the value of q5"' a t  
the end-points. Accordingly the equation is first multiplied by a suitable function 
before the integration is carried out. For the even eigenvalues we use (1 - y2)2, and 
for the odd eigenvalues we use y( 1 - y2)2. These functions vanish with their 
fist derivatives at the end-points, thus reducing the importance of the behaviour 
of $ at these points, and also make every term in the equation even. 

A suitable trial function for the first eigenvalue is q5 = (1  - y2)2; for the second 
we may use q5 = y( 1 - These satisfy the boundary conditions and have the 
correct number of zeros. On integrating from y = - 1 to y = 1 the following 
equations are obtained: 

22a4- 132a2+693+ccR(30a2-33) = 0, (6.1) 

(6.2) 26a4 - 572a2+ 6435 + aR(30a2- 273) = 0. 

The first-quadrant roots of these equations can be found numerically; the results 
are given in table 4. 

R 
0 
0.5 
1.0 
1.5 
2.0 
2.5 
5.0 

10 
20 
50 

First eigenvalue 
2.0751 + 1.1429i 
1.9149+ 1.1923.3 
1.7747 + 1.21271, 
1*6532+ 1.213% 
1.5486 + 1.2021.3 
1.4588+ 1.1825.1. 
1-1644+ 1.0467.3 
0.9176 + 0.81611, 
0.7526 + 0.54561, 
0.5434 

Second eigenvalue 
3.6560 f 1.5382i 
3.5167 $- 1.55446 
3.3871 + 1.55646 
3*2672+ 1.54716 
3.1565 i- 1-52856 
3.0546 + 1-50266 
2.6591 + 1.30831 
2.2321 f 0.81896 
1-2376 
0.4738 

TABLE 4. Approximate eigenvalues as functions of R 

The values obtained here are presumably better for small R than for large; 
the result is obviously wrong as R + co. They are also somewhat better for the 
first eigenvalue than for the second, the errors being about 3 yo and 10 yo. It 
appears that the error lies mainly in the argument of the eigenvalue. 
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One important source of error here has been the choice of a real trial function 
for $; it is in fact complex. However, a calculation of the exact eigenfunction 
for R = 0 showed that the imaginary part was fairly small. 

7. Conclusions 
The eigenvalue problem for the decay rate of small stationary disturbances 

to Poiseuille flow has been solved in the cases R < 1 and R $ 1. The principal 
results are as follows. (i) For small R, a is complex; if a is an eigenvalue so is a*. 
(ii) For large R two sequences of eigenvalues are found. The first sequence con- 
sists of eigenvalues of O( 1) as R -+ co (an exception being the first member, which 
is zero); each member is asymptotically real but is complex for any finite R. All 
these eigenvalues except the first approach their asymptotic values a,, in such 
a way that a - a. N KR-Qexp (gin), where K is a real number. 

The second sequence consists of eigenvalues which are 0lR-l) as R -+ co. All 
the eigenvalues which have been calculated are real and it has been proved that 
all the even eigenvalues are real. In  these cases every term in the asymptotic 
expansions of the eigenvalues is real; this does not of course prove that they are 
real for all sufficiently large R, only that the imaginary part is asymptotically 
smaller than any inverse power of R. The flow will be dominated by the members 
of this sequence for sufficiently large R and the disturbance will persist down- 
stream a distance O(R). 

The presence of two sequences of eigenvalues is probably a consequence of the 
fact that (2.3) is non-linear in a. Possibly the situation is modelled by (6. l), where 
if one assumes a = O( 1) as R+co one finds a%-%, but the assumption a = O(R-l) 
leads to aR + 21. (iii) The ikst eigenvalue (i.e. with smallest real part) is even, 
corresponding to an asymmetrical velocity perturbation. The explanation has 
been given in $3; this possibility seems to have been overlooked in the literature. 
It has been shown that for large R the solution for this eigenvalue has two 
branches, both of which approach zero, one as R 3  and the other as R-1. As noted 
the behaviour of the flow will be dominated by the second branch and disturb- 
ances will persist for a distance of O(R). Since the higher modes are more rapidly 
damped it also follows that any asymmetry in the velocity profile will become 
more pronounced. 

These results may be compared with those of Gillis & Brandt (1964), who 
attempted, as part of their work, a direct numerical solution of (2.3). It should 
be noted that Gillis & Brandt are concerned only with the odd eigenfunctions 
since they assume a symmetrical velocity profile throughout. No comparison, 
therefore, is possible with the first (even) mode of the present work. The relevant 
results are containedin a table which is reproduced here for convenience (adapted 
to the present notation) as table 5. This gives the first odd eigenvalue as a function 
of R. 

For small R the agreement with the present work is good. At R = 0-25, for 
example, the discrepancy with the result in table 1 is less than 0.1 %. For large R, 
Gillis & Brandt discovered only the eigenvalue of the second sequence; the 
explanation is probably that the eigenfunctions of the f i s t  sequence have a 

51-2 
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R 
0 
0.25 
2.5 

Rcat = 8.461 
10 
25 
50 
100 
250 
Large R 

tl. 

3.7488 + 1.3843; 
3.6767 + 1.3914; 
3*1544+ 1.296% 
2.6320 
1.9101 
0.7492 
0.3758 
0.1881 
0.0753 

22.25 
19.10 
18.73 
18.79 
18.81 
18.81 
18.81 

TABLE 5. Second eigenvalue as a function of R;  from Gillis & Brandt (1964), 
adapted and rounded off 

boundary-layer character which a numerical technique would not pick up unless 
special measures were taken. However the results given agree well with table 3. 

Gillis & Brandt also find that there is a critical Reynolds number above which 
the eigenvalue is real (Rcrit = 8.46 approximately). As noted earlier in this section, 
the present calculations accord with, but do not establish, this result. In  this 
respect it is unfortunate that Gillis & Brandt do not give more detail in the crucial 
range 5 < R < 15 say, or similar calculations for the other modes. 

The behaviour of a as a function of R may be summarized as follows. For 
R = 0 there is an infinite sequence of complex eigenvalues (given in table 1) 
which may be ordered by the magnitude of the real part. As R increases, each 
eigenvalue traces out a curve in the a plane; at some value of R each curve divides 
into two branches. One branch of each curve approaches the origin as R --f m; 
if the conclusions of Gillis & Brandt are true of all the eigenvalues then this 
approach is along the real axis. The second branch of each curve approaches a 
point on the real axis; these points are the numbers a. in table 2. In  general the 
curve approaches the point at  an angle +n; the exception is the first eigenvalue 
a. = 0, where the angle is Sn. 

The precise nature of the behaviour of cc at moderate R is unknown. The 
value of R at which the curves divide is presumably less than Rcrit = 8-46 for 
the second eigenvalue and for the other modes there is no information at  all. 
This range of R is beyond the reach of the analytical methods used here and will 
presumably require further numerical exploration. 

One further feature of the results may be noted. This appears in the exact and 
approximate solutions for small R and in the work of Gillis & Brandt. As R 
increases from zero the imaginary part of a exhibits a small initial increase; 
this feature is present in all the [cases for which the calculation has been per- 
formed, and appears to diminish in magnitude for the higher eigenvalues; see 
table 1. The physical significance of this phenomenon is not apparent to the 
author. 

As explained in $ 2  attention has been confined to those eigenvalues whose 
real part is positive and therefore give rise to exponentially decaying behaviour 
as x -+ co. However, a referee has pointed out that the eigenvalues with negative 
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real part may be used to treat a slightly different problem. We now consider 
a channel infinite in both directions with fully developed Poiseuille flow for 
all x. A small stationary disturbance is introduced at x = 0, for example, by means 
of a grid. The decay of the disturbance as x + co may be studied using the analysis 
presented above, but for the region x < 0 one needs the eigenvalues with negative 
real part. In  this way a solution for the whole channel may be found in two parts, 
one part valid for x > 0 and the other for x < 0. Neither solution can be continued 
into the other across the line x = 0 because there is a singularity there correspond- 
ing to the introduction of momentum by the obstacle. (The original problem 
differs in that no introduction of momentum at 17: = Ois contemplated; the solution 
for x < 0 would be obtained by analytic continuation of the solution for x > 0. 
The exponentially large behaviour indicates, as expected, that the linearization 
is not valid for x large and negative.) 

To find the eigenvalues with negative real part we note first that the equations 
of @ 3 ,  4 (corresponding to small R and the O( 1) eigenvalues for large R respec- 
tively) remain the same when the sign of x is reversed, to the first approximation. 
The leading terms of the required eigenvalues are thus obtained by reversing 
the signs of the results of 5s 3, 4. 

The required eigenvalues of O(I2-l) will be the negative eigenvalues of (5.2), 
and it seems likely that there are none. It is possible to prove that no negative 
even eigenvalues exist. It has been shown in 5 5 that, when q5, is even, a, is real; 
multiplying (5.2) by q5“ and integrating from y = - 1 to y = + 1 gives 

the boundary terms making no contribution in this case. The coefficient of a, is 
always positive. To show this, put 

and h = Il/12. Then h is stationary when 6h = 0, or 

&Il - MI2 = 0; 

writing Y = $ I ,  this reduces, after integration by parts, to 

3 d 
- (32- 1)- +hY = 0, Y(  & 1) = 0. 
dY 

The least value of h is therefore the least eigenvalue of (7 .1)  (Legendre’s equation), 
which is 2, and the required result follows. 

Machine calculations have shown that there are no real eigenvalues in the 
range - 200 < a, < 0 and one may therefore reasonably conjecture that all the 
eigenvalues of (5.2) are real and positive. 

It follows that when R is large the only eigenvalues whose real part is negative 
are those of O( 1). The disturbance therefore penetrates upstream in a distance 
of O( l), in contrast with the downstream region, where the disturbance penetrates 
a distance O(R).  
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